

Nadprzewodnictwo wysokotemperaturowe oraz inne stany o złamanej symetrii w układach silnie skorelowanych elektronów

<u>M. Zegrodnik¹</u>, A. Biborski¹, M. Fidrysiak², J. Kaczmarczyk², M. Abram², oraz J. Spałek²

¹Akademickie Centrum Materiałów i Nanotechnologii, Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie

² Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, Kraków

Nadprzewodnictwo wysokotemperaturowe oraz inne stany o złamanej symetrii w układach silnie skorelowanych elektronów

[1] **M. Zegrodnik**, A. Biborski, M. Fidrysiak, J. Spałek. "Superconductivity in the three-band model of cuprates: Variational wave function study and relation to the single-band case". *Phys. Rev. B* **99**, 104511 (2019)

[2] **M. Zegrodnik**, J. Spałek. "Incorporation of charge- and pair-density-wave states into the one-band model of d-wave superconductivity". *Phys. Rev. B* **98**, 155144 (2018)

[3] **M. Zegrodnik**, J. Spałek. "Stability of the coexistent superconducting-nematic phase under the presence of intersite interactions". *New J. Phys.* **20**, 063015 (2018)

[4] **M. Zegrodnik**, J. Spałek. "Effect of interlayer processes on the superconducting state within the t - J - U model: Full Gutzwiller wave-function solution and relation to experiment". *Phys. Rev. B* **95**, 024507 (2017)

[5] **M. Zegrodnik**, J. Spałek. "Universal properties of high-temperature superconductors from real-space pairing: Role of correlated opping and intersite Coulomb interaction within the t - J - U model". *Phys. Rev. B* **96**, 054511 (2017)

[6] J. Spałek, **M. Zegrodnik**, J. Kaczmarczyk. "Universal properties of high- temperaturę superconductors from real-space pairing: t- J-U model and its quantitative comparison with experiment". *Phys. Rev. B* **95**, 024506 (2017)

[7] M. Abram, **M. Zegrodnik**, J. Spałek. "Antiferromagnetism, charge density wave, and d -wave superconductivity in the extended t - J - U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory". *J. Phys. Condens. Matter* **29**, 365602 (2017)

[8] **M. Zegrodnik**, J. Spałek. "Spontaneous Appearance of the Spin-Triplet Fulde-Ferrell-Larkin-Ovchinnikov Phase in a Two-Band model: Possible Application to LaFeAsO1–*x*F*x*".*J. Supercond. Nov. Magn.* **28**, 1155 (2015)

[9] **M. Zegrodnik**, J. Spałek. "Spontaneous appearance of nonzero-momentum Cooper pairing: Possible application to the iron-pnictides". *Phys. Rev. B* **90**, 174507 (2014)

Plan prezentacji

- Nadprzewodniki wysokotemperaturowe na bazie miedzi
- Opis teoretyczny płaszczyzn miedziowo-tlenowych
- Podstawowe charakterystyki stanu nadprzewodzącego w ujęciu jednopasmowym
- Stany z modulacją ładunkową oraz modulacją gęstości par Coopera
- Wpływ tlenowych stopni swobody na nadprzewodnisctwo porównanie modeli jedno- oraz trój-pasmowych
- Podsumowanie

Nadprzewodniki na bazie miedzi

Rozszczepienie poziomów energetycznych:

Model trój-pasmowy (model d-p):

 $\mathbf{2}$

0

-2

energy [eV]

Efektywny model jedno-pasmowy:

$$\hat{H} = t \sum_{\langle ij \rangle \sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + t' \sum_{\langle \langle ij \rangle \rangle \sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
$$t = -0.35 \,\text{eV}, \ t' = 0.0875 \,\text{eV}, \ U = 6-8 \,\text{eV}$$

Model *t*-J $(U \rightarrow \infty)$:

$$\hat{H} = t \sum_{\langle ij \rangle \sigma} \hat{\tilde{c}}_{i\sigma}^{\dagger} \hat{\tilde{c}}_{j\sigma} + t' \sum_{\langle \langle ij \rangle \rangle \sigma} \hat{\tilde{c}}_{i\sigma}^{\dagger} \hat{\tilde{c}}_{j\sigma} + J \sum_{\langle ij \rangle} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}$$
$$t = -0.35 \,\text{eV}, \ t' = 0.0875 \,\text{eV}$$

Nadprzewodniki na bazie miedzi

Rozszczepienie poziomów energetycznych:

Model trój-pasmowy (model d-p):

Efektywny model jedno-pasmowy:

$$\hat{H} = \sum_{\langle ij \rangle \sigma} t \, \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{\langle \langle ij \rangle \rangle \sigma} t' \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
$$t = -0.35 \,\text{eV}, t' = 0.0875 \,\text{eV}, U = 6-8 \,\text{eV}$$

Model *t=J=U*:

$$\hat{H} = \sum_{\langle ij \rangle \sigma} t \, \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{\langle \langle ij \rangle \rangle \sigma} t' \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + J \sum_{\langle ij \rangle} \hat{\mathbf{S}}_{i} \, \hat{\mathbf{S}}_{j} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
$$t = -0.35 \,\text{eV}, t' = 0.0875 \,\text{eV}, J = 0.1 \,\text{eV}, U = 6-8 \,\text{eV}$$

$$\hat{H} = t \sum_{\langle ij \rangle \sigma} \hat{c}_{i\sigma}^{+} \hat{c}_{j\sigma} + J \sum_{\langle < ij \rangle > S} \hat{S}_{i} \cdot \hat{S}_{j} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

$$|\Psi_{G}\rangle = \hat{P}|\Psi_{0}\rangle = \prod_{i} \sum_{\Gamma} \lambda_{\Gamma} |\Gamma\rangle_{ii} \langle \Gamma|\Psi_{0}\rangle, \quad \{|\Gamma\rangle_{i}\} = \{|\phi\rangle_{i}, |\uparrow\rangle_{i}, |\downarrow\rangle_{i}, |\uparrow\downarrow\rangle_{i}\}$$
RMFT DE-GWF

$$\hat{J} \quad \hat{I} \quad$$

$$\hat{P}_{i}^{2} = 1 + x\hat{d}_{i}^{HF}$$
$$\hat{d}_{i}^{HF} = \hat{n}_{i\uparrow}^{HF}\hat{n}_{i\downarrow}^{HF}, \quad \hat{n}_{i\sigma}^{HF} = \hat{n}_{i\sigma} - \left\langle \hat{n}_{i\sigma} \right\rangle_{0}$$

$$E_{G} = \frac{\left\langle \Psi_{G} \left| \hat{H} \right| \Psi_{G} \right\rangle}{\left\langle \Psi_{G} \left| \Psi_{G} \right\rangle} = F\left(P_{ij}, S_{ij}, x\right)$$

$$P_{ij} = \left\langle \Psi_0 \left| \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} \right| \Psi_0 \right\rangle, \quad S_{ij} = \left\langle \Psi_0 \left| \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} \right| \Psi_0 \right\rangle$$

Fundamentalne charakterystyki stanu nadprzewodzącego w miedzianach

XJ. Zhou et al, Nature 423, 398 (2003) M. Hashimoto et al., PRB 094516 (2008)

modele Hubbarda, t-J, oraz t-J-U

J. Spałek, MZ, and J. Kaczmarczyk, Phys. Rev. B 95, 024506 (2017)

model t-J-U porównanie ilościowe z eksperymentem

MZ and J. Spałek, *Phys. Rev. B* 95, 024507 (2017) MZ and J. Spałek, *Phys. Rev. B* 96, 054511 (2017) F. Carbonne et al., Phys. Rev. B 74, 064510 (2006); H.J.A. Molegraaf et al., Science 295, 2239 (2002); A.A. Kordyuk et al., Phys. Rev. B 71, 214513 (2005); S.V. Borisenko et al., Phys. Rev. Lett. 96, 117004 (2006)

dwie prędkości Fermiego: porównanie ilościowe z eksperymentem

Teoria (k-DE-GWF): M. Fidrysiak, MZ, J. Spałek, J. Phys. Condens. Matter 30, 475602 (2018)

Eksperyment:

X. J. Zhou et al., Nature 423, 398 (2003); Matsuyama et al., Phys. Rev. B 95, 165435 (2017).

Fala gęstości ładunku (CDW) oraz fala gęstości par Coopera (PDW)

PDW –mikroskopia tunelowa Josephsona

M. H. Hamidian et al., Nature 532, 343 (2016)

Fala gęstości ładunku (CDW) oraz fala gęstości par Coopera (PDW) pairing: $\Delta_{ii} = \langle \hat{c}^+_{i\sigma} \hat{c}^+_{i\sigma} \rangle$ hopping: $P_{ij} = \langle \hat{c}_{j\sigma}^{+} \hat{c}_{i\sigma} \rangle$ $\mathbf{Q} = (2\pi/3, 0)/a$ א/4 Ad (A + A + A + SAd,s' + O)

$$\Delta_{i}^{a} = (\Delta_{1,0} + \Delta_{-1,0} - \Delta_{0} \\ \Delta_{i}^{s'} = (\Delta_{1,0} + \Delta_{-1,0} + \Delta_{0} \\ \Delta_{i}^{x} = (\Delta_{1,0} - \Delta_{-1,0})/2 \qquad \qquad \delta \Delta^{a,s} \neq 0 \\ \delta P^{d,s'} \neq 0 \\ \delta n \neq 0 \qquad \qquad \Rightarrow PDW + CDW$$

Fala gęstości par Coopera:

 $\Delta_i^{d,s'} = \overline{\Delta}^{d,s'} + \delta \Delta^{d,s'} \cos \mathbf{QR}_i$ $\Delta_i^x = \delta \Delta^x \sin \mathbf{QR}_i$

Fala gęstości ładunku:

$$P_i^{d,s'} = \overline{P}^{d,s'} + \delta P^{d,s'} \cos \mathbf{QR}_i$$
$$n_{i\sigma} = \overline{n} + \delta n \cos \mathbf{QR}_i \quad P_i^x = \delta P^x \sin \mathbf{QR}_i$$

PDW+CDW: model Hubbarda

MZ, J. Spałek, Phys. Rev. B 98, 155144 (2018); MZ, J. Spałek, New J. Phys. 20, 063015 (2018)

PDW+CDW: model t-J-U

MZ, J. Spałek, Phys. Rev. B 98, 155144 (2018); MZ, J. Spałek, New J. Phys. 20, 063015 (2018)

Model trójpasmowy (d-p)

$$\begin{split} \hat{H} &= -t_{dp} \sum_{\langle ij \rangle \sigma} (-1)_{ij} \hat{d}_{i\sigma}^{+} \hat{p}_{j\sigma} - t_{p} \sum_{\langle ij \rangle \sigma} (-1)_{ij} \hat{p}_{i\sigma}^{+} \hat{p}_{j\sigma} + \varepsilon_{p} \sum_{i} \hat{n}_{p,i} + \varepsilon_{d} \sum_{i} \hat{n}_{d,i} \\ &+ U_{d} \sum_{i} \hat{n}_{d,i,\uparrow} \hat{n}_{d,i,\downarrow} + U_{p} \sum_{i} \hat{n}_{p,i,\uparrow} \hat{n}_{p,i,\downarrow} \end{split}$$

$$t_{dp} = 1.1 - 1.5 eV \qquad U_d = 8 - 10 eV$$

$$t_p = 0.5 - 0.65 eV \qquad U_p = 4 - 5 eV$$

$$\varepsilon_{dp} = \varepsilon_d - \varepsilon_p = 1.2 - 3.5 eV$$

Model trójpasmowy (d-p): charakterystyki stanu normalnego

D. Rybicki et al., Nat. Commun. 7,11413(2016)

MZ, A. Biborski, M. Fidrysiak, J. Spałek, Phys. Rev. B 99, 104511 (2019)

Model trójpasmowy (d-p): amplitudy parowania

Model trójpasmowy (d-p): faza nadprzewodząca

 $\Delta E = U$

MZ, A. Biborski, M. Fidrysiak, J. Spałek, Phys. Rev. B 99, 104511 (2019)

Podsumowanie

- Ważnymi elementami opisu SC w miedzianach są: uwzględnienie wyrazu oddziaływań kinetycznej wymiany, niezerowa lecz mała ilość podwójnych obsadzeni, uwzględnienie efektów wyższych rzędów wynikających z korelacji elektronowych → podejście oparte o model t-J-U oraz metodę DE-GWF.
- Otrzymano zgodność z dostępnymi danymi doświadczalnymi dla fundamentalnych charakterystyk stanu nadprzewodzącego w kupratach.
- Otrzymano właściwą sekwencje faz na diagramie fazowym z nadprzewodnictwem d-wave powyżej domieszkowania optymalnego oraz modulacją ładunkową poniżej (koegzystencja PDW+CDW).
- W ogólnych aspektach podejścia jedno- oraz trój-pasmowe prowadzą do podobnych wyników dla fazy nadprzewodzącej.
- Jawne uwzględnienie tlenowych stopni swobody wydaje się konieczne w celu przeprowadzenia dokładnego opisu poszczególnych związków należących do rodziny kupratów oraz odwzorowania różnic jakie miedzy nimi występują.

Finansowanie:

- MAESTRO, Nr DEC-2012/04/A/ST3/00342, Narodowe Centrum Nauki (NCN)
- SONATA, No. 2016/21/D/ST3/00979, Narodowe Centrum Nauki (NCN)

Dziękuję za uwagę