2.1.7. Krzemowe komory dryfowe.

W strukturze detektora tego rodzaju można wyróżnić dwie strefy o określonych zadaniach funkcjonalnych. Strefa pierwsza, którą zwać będziemy *"strefą transportową"*, jest odpowiedzialna za istotny w tej metodzie *parametr deskryptywny* sygnału, niosący informację o współrzędnej miejsca interakcji cząstki jonizującej z medium aktywnym detektora. W drugiej strefie, którą określimy mianem *"strefy generacyjnej"* sygnału, zachodzi właściwy proces formowania indukowanego impulsu prądowego detektora $i_D(t)$.

Na rysunku 8 pokazano schematycznie poprzeczny przekrój omawianego detektora. Posłuży on do zwięzłego przypomnienia zasady jego działania.

Rys.8. Schematyczny przekrój poprzeczny krzemowej komory dryfowej.

Strefa transportowa obejmuje równoległy zespół "bliźniaczych", zaporowo spolaryzowanych złącz paskowych $\mathbf{p}^+\mathbf{n}$, utworzonych po obu stronach cienkiej płytki półprzewodnika typu \mathbf{n} ("*wafera"*). Przy dostatecznie dużym napięciu polaryzacji tych złącz przynależne im warstwy zubożone osiągają szerokość równą połowie wzajemnej odległości przeciwległych złącz, powodując w efekcie całkowite zubożenie zawartego między nimi obszaru "*wafera*". Na płaszczyźnie "**x-y**" ustala się wówczas minimum potencjału, ku któremu będą wciągane, "wytwarzane" w akcie detekcji elektrony.

Przy spełnieniu warunku

$$V_{calkowitego zubożenia} < V_{D(n)} < V_{D(n-1)} < V_{Dn-2} \dots < V_{D1} \dots < V_{E/F}$$

w objętości "*wafera*" wytworzone zostaje *wzdłużne pole elektryczne* E_y wywołujące dryf, skoncentrowanych w dolinie potencjału pola poprzecznego E_z , elektronów w kierunku osi "y" z prędkością " w_{el} ". Transportowana "*chmura*" elektronów w trakcie swego ruchu ulega dyspersji wzdłużnej w efekcie rozmycia dyfuzyjnego i odpychania kulombowskiego, przybierając na krawędzi *strefy generacyjnej* charakterystyczną formę "*garbu gaussowskiego*".

$$n(t, y) = \frac{n_0}{\sqrt{4\pi D_n t}} \exp\left[\left(\frac{y - w_{el}t}{4D_n t}\right)^2\right]$$
(67)

W wyrażeniu powyższym przyjęto następujące oznaczenia:

- no liczba elektronów powstała w akcie detekcji,
- wel prędkość dryfu elektronów
- **D**_n współczynnik dyspersji elektronów

Dla zadanej współrzędnej y (odpowiadającej odległości punktu detekcji od "krawędzi" strefy generacyjnej) przy uwzględnieniu związków:

$$\sigma_{y} = \sqrt{4D_{n}t}$$
, $\sigma_{y} = w_{el}\sigma_{T}$ oraz $y = w_{el}t_{p}$ (68)

równanie (66) sprowadzimy do postaci

$$n(t)\Big|_{y} = \frac{n_{o}}{\sqrt{\pi} w_{el} \sigma_{T}} exp\left[-\left(\frac{t_{p}-t}{\sigma_{T}}\right)^{2}\right]$$
(69)

gdzie t_p oznacza średni czas przejścia elektronów przez strefę transportową, zaś σ_T - dyspersję czasu przejścia.

Z planarnej konfiguracji detektora wynika konieczność zakrzywienia toru transportowanych elektronów w celu skierowania ich do elektrody zbiorczej (A). Celowi temu służy zespół asymetrycznie spolaryzowanych pasków pomocniczych (E,F). Dla uproszczenia analizy przyjmiemy jednak liniową konfigurację *strefy generacyjnej* o zastępczej szerokości bariery "D". Docierający do niej pojedynczy elektron w czasie swego dryfu do anody generuje w jej obwodzie zewnętrznym indukowany mikroimpuls prądowy oznaczany umownie symbolem "SER" (Single Electron Response). Opisuje go znane nam już ogólne równanie (59), które po uwzględnieniu faktu, że $x_o=0$, przyjmie formę

$$SER = \frac{q}{\tau_{el}} exp\left(-\frac{t}{\tau_{el}}\right)$$
(70)

Indukowany impuls prądowy *i(t)* stanowi superpozycję odpowiedzi wszystkich elektronów wchodzących w skład *rozmytej paczki elektronów*. Opisuje go splot funkcji (68) i (69).

$$i(t) \equiv i_{el}(t) = n(t) |_{y} * SER$$
(71)

Napiszmy zatem

$$i(t) = \frac{n_o}{\sqrt{\pi} w_{el} \sigma_T} \frac{q}{\tau_{el}} \int_0^t exp\left[-\left(\frac{t_p - \xi}{\sigma_T}\right)^2 \right] exp\left(-\frac{t - \xi}{\tau_{el}}\right) d\xi$$
(72)

skąd po wykonaniu całkowania otrzymujemy

$$i(t) = \frac{i_{max}}{2} \exp\left[\frac{\sigma_T^2}{4\tau^2} - \frac{t - t_p}{\tau_{el}}\right] \left\{ erf\left[\frac{t - t_p}{\sigma_T} - \frac{\sigma_p}{2\tau_{el}}\right] + erf\left[\frac{\sigma_T}{2\tau_{el}} + \frac{t_p}{\sigma_T}\right] \right\}$$
(73)

przy czym

$$\dot{\boldsymbol{i}}_{max} = \frac{\boldsymbol{n}_o \, \boldsymbol{q}}{\boldsymbol{w}_{el} \, \boldsymbol{\tau}_{el}} \tag{74}$$

Z dobrym przybliżeniem można przyjąć, że

$$erf\left[\frac{\sigma_T}{2\tau_{el}} + \frac{t_p}{\sigma_T}\right] \cong 1$$

Ułatwia ono istotnie graficzną prezentację zależności funkcjonalnej (73). Przedstawiono ją na rysunku 9 w układzie współrzędnych znormalizowanych $[i/i_{max}] - [(t-t_p)/\tau_{el}]$.

Rys.9. Rodzina znormalizowanych przebiegów indukowanego impulsu prądowego w krzemowej komorze dryfowej. (Parametr $\Psi = \sigma_T / \tau_{el}$).

Rysunek powyższy ukazuje ewolucję odpowiedzi komory dryfowej na quasidirakowskie wymuszenie ładunkowe ($n_o q$) w zależności od jego współrzędnej przestrzennej (y_o). Łatwo na nim zauważyć, że poczynając od wartości parametru $\Psi \cong 0.5$, o kształcie odpowiedzi decyduje głównie dyspersja ładunku (σ_T) w strefie transportowej. Dysponując uzyskaną z pomiaru wartością dyspersji (σ_T) można w oparciu o zespół związków (68) wyznaczyć wartość współrzędnej (y_o). Proste działania arytmetyczne dają w wyniku zależność

$$\boldsymbol{y}_0 = \frac{\boldsymbol{w}_{el}^3}{4\boldsymbol{D}_n} \boldsymbol{\sigma}_T^2 \tag{75}$$

W równaniu (71) formalnie utożsamiono przebieg indukowanego impulsu prądowego i(t) z przebiegiem *składowej elektronowej i_{el}(t)*. Dla pełności opisu funkcjonalnego dodajmy więc, że w procesie formowania indukowanego impulsu prądowego nie uczestniczą nośniki dziurowe, jako że są one zbierane daleko poza zasięgiem pola elektrycznego strefy generacyj-nej przez najbliższe miejsca ich generacji elektrody zbiorcze złącz **D**_k.