
Example 3:

k=(qx,qx,0) – space group No 139  (I4/mmm) – pos. 8f , orbit 1

For that case symmetry analysis shows: 
• the 8 atomic positions are split into two orbits of Gk, four sites each
• four 1-d representations τ1, τ2, τ3  and τ4, 
• τ2 and  τ3  occur two times in the decomposition, while τ1 and τ4 occur 

only once for the (qx,qx,0) wave vector.

Atomic positions:
1:  (0.25,0.25,0.25) 2:  (0.25,0.25,0.75)
3:  (0.75,0.75,0.75) 4:  (0.75,0.75,0.25)

For   IR   τ  3 four basis vectors are calculated from MODY (  for   k   and   –k  ):   
                                                                  

the additional parameters a,b are given by:

IR τ3  (+k) IR  τ3  (-k)

  BV3   BV4

1x   a*    0 
1y   a*    0 
1z   0    a*

2x  -a*    0 
2y  -a*    0 
2z   0    a*

3x   b*    0 
3y   b*    0 
3z   0    b*

4x  -b*    0 
4y  -b*    0 
4z   0    b*

a=ei 2 qx=ei 2  b=ei 4 qx=ei 4 

   BV1   BV2

1x   1     0 
1y   1     0 
1z   0     1 
2x  -1     0 
2y  -1     0 
2z   0     1 
3x   a     0 
3y   a     0 
3z   0     a 
4x  -a     0 
4y  -a     0 
4z   0    -a



It can be seen that for both +k and -k  for one of the BV’s the magnetic moments 
lie in the (x,y) plane,  while for the other one in the z direction.

To produce a real model structure linear combination of BV's  is used, with 
the respective coefficients denoted as:  Ci = Ai +iBi  (i=1,4).  The general condition 
for the linear combination to produce a real result leads to a set of linear equations 
for unknown Ai,Bi  . The number of unknown variables is Nv=8. After elimination 
of redundant equations the reduction procedure leads to a  set of four equations so 
Ne=4 and for IR τ3  the final set of equations looks as follows:

where g,h,p are constants dependent on the α=πqx value.

It can be seen that A3,  B3 couple only to A1 ,  B1 and A4,  B4 couple only to A2 ,B2 . 
This is again a direct indication that the system of equation separates into two 
pairs of equations, describing two pairs of matching basis vectors. Each pair of 
equations  can be solved separately and after  converting the relations  to  the  Ci 

coefficients the solution looks as follows:

Again it can be seen that the reality condition leaves the C1 and C2 with 
arbitrary values. It is convenient to express these coefficients by four real 
parameters, namely their amplitudes and phases:

Thus it turns out that the solutions allows four real free parametersand the 
parameters can be represented  as two amplitudes and two free phases describing 
the model structure.  Using such coefficients for calculation of the linear 
combination of BV's leads to the final solution describing the model structure.
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The results of the calculation can be found in the first part of Table 1 below. 
Thus  IR τ3 allows two independent  “magnetic waves” with arbitrary amplitudes 
and phases in the symmetry adapted magnetic structure model for Orbit 1.

Table 1 – group 139 – k=(qx,qx,0) – pos. 8f – orbit 1+2

Orb.1 Position τ3 – M1 τ3 – M2
1  (0.25, 0.25, 0.25)   [C,C,0]  cos(kt+α+φ1)   [0,0, D]  cos(kt+α+φ2)
2  (0.25, 0.25, 0.75)   [-C,-C,0]  cos(kt+α+φ1)   [0,0,D]  cos(kt+α+φ2)
3  (0.75, 0.75, 0.75)   [C,C,0]  cos(kt+3α+φ1)   [0,0, D]  cos(kt+3α+φ2)
4  (0.75, 0.75, 0.25)   [-C,-C,0]  cos(kt+3α+φ1)   [0,0, D]  cos(kt+3α+φ2)

Orb.2      
5  (0.25, 0.75, 0.75)   [E,-E,0]  cos(kt+2α+φ3)   [0,0,F]  cos(kt+2α+φ4)
6  (0.75, 0.25, 0.75)   [-E,E,0]  cos(kt+2α+φ3)   [0,0,F]  cos(kt+2α+φ4)
7  (0.75, 0.25, 0.25)   [E,-E,0]  cos(kt+2α+φ3)   [0,0, F]  cos(kt+2α+φ4)
8  (0.25, 0.75, 0.25)   [-E,E,0]  cos(kt+2α+φ3)   [0,0,F]  cos(kt+2α+φ4)

After repeating the calculation for the second orbit and construction of the 
linear  combination  of  BV’s  with  the  obtained  Cm. coefficients  the  complete 
magnetic structure model is  obtained. Short  summary of the obtained magnetic 
structure model is shown in the Table 1. 

Now in the final result we have two independent orbits, with two independent 
modes on each orbit. Thus for the 8(f) positions there  are eight free parameters: 
four amplitudes C,D,E,F and four free phases φ1, φ2, φ3, φ4.   The resulting structure 
contains  two  flat  cycloids with  magnetic  moment  turning  in  the  plane 
perpendicular to [1,-1,0] direction for the first orbit and in the plane perpendicular 
to [1,1,0] direction for the second orbit (spiral configuration). Again the tips of the 
magnetic moment vectors in general walk along a  Lissajous curve,  the shape of 
which depends on the amplitudes C,D,E,F and the phase differences  φ2−φ1, φ4−φ3.

The phase differences between the individual ions result from their location 
in space. The phase of the magnetic wave on each ion is determined by the phase 
at the origin of the given unit cell and the additional phase correction result from 
the position of the ion in the unit cell (various k·rn values). The phase corrections 
make the individual ions form a complete sinusoidal wave propagating across the 
unit  cell.  For  the  structure  shown  in  the  table  the  α−dependent extra  phase 
correction  is pinned to  zero for  k·rn=  0.  In principle the phase calibration are 
completely independent on both orbits, so it only a matter of convenience to chose 
the phases consistently for both orbits and with reference to the cell origin.  One 
phase  relation  that  holds  idependently  of  the  phase  calibration  is  the  phase 
difference between origins of two neigbouring unit cells.



Figure 1 below present the spatial arrangement of magnetic moments in the 
symmetry-adapted structure model consistent with the τ3 representation. Orbits 1 
and 2 are denoted by green and red sites respectively. It can be noticed that all ions 
in Orbit 2 are in the same phase, while two pairs of atoms in Orbit 1 definitely 
exhibit phase difference, manifested by the additional turning angle of the cycloid.


