
Example 2:

k=(0,0,1/2) – space group No. 62  (P n m a) – pos. 4d

For that case symmetry analysis shows: 
• two representations 1 and 2, both 3-dimensional, 
• occurring two times each in the decomposition of magnetic representation.
• all atomic positions belong to one orbit of Gk 

Because   k       k   f  or each   IR   only six basis vectors are used  :

All the BV’s are complex and their values for IR are shown below:

Summary:

• all BV's are complex 
• orientations of magnetic moments (non-zero components) are different for

various BV’s
• the orientation determines the possible BV’s pairs matching: (BV1-BV2),

(BV3-BV4), (BV5-BV6)

To produce a real model structure linear combination of BV's  is used, with
the respective coefficients denoted as:  Ci = Ai +iBi  (i=1,6).  The general condition
for the linear combination to produce a real result leads to a set of linear equations
for unknown Ai,Bi . The number of unknown variables is Nv=12. 

  BV1 BV2 BV3

1x   0   0   1 
1y   1 -1   0 
1z  0  0   0 
2x  0  0   1
2y -1  1   0 
2z  0  0   0 
3x  0   0  -i  
3y  i  i   0 
3z  0  0   0 
4x  0  0  -i  
4y -i -i   0 
4z  0  0   0

  BV4 BV5 BV6

1x  -1   0  0 
1y   0  0  0 
1z  0  1 -1 
2x -1  0  0
2y  0  0  0 
2z  0  1  -1 
3x -i   0   0  
3y  0  0   0 
3z  0  i   i 
4x -i  0   0  
4y  0  0   0 
4z  0  i   i



After elimination of redundant equations the reduction  procedure leads to a
set of six equations so  Ne=6 and for  IR    the final set of equations looks as
follows:

Translation to the complex Ci  coefficients converts the solution to the following
form:

Thus the C1, C3 and C5 coefficients can be chosen as arbitrary values, and can be
represented by six arbitrary Ai,Bi values:

For each pair  of respective coefficients (pair  of respective BV’s) there are
two free real parameters, which describe the respective magnetic mode uniquely. .
Thus  fwe  have  three  independent  magnetic  modes,  oriented  along  x,y  and  z
directions, which may contribute to the magnetic structure in arbitrary proportions.
The respective final solutions for IR  are presented in Table 2a.

Table 2a – group 62 – pos. 4(a) – k=(0,0,1/2) - 2

Site Position 2 – Mx 2 – My 2 – Mz

1 (0.00, 0.00, 0.00) [A1,0,0] [0, A2,0] [0,0, A3]
2 (0.00, 0.50, 0.00) [A1,0,0] [0,-A2,0] [0,0, A3]
3 (0.50, 0.50, 0.50) [B1,0,0] [0,-B2,0] [0,0,-B3]
4 (0.50, 0.00, 0.50) [B1,0,0] [0, B2,0] [0,0,-B3]

All modes are collinear and labeled by their respective orientation. The four
magnetic sites are divided into two distinct sublattices, controlled by different
parameters. Only one mode (My) is fully compensated i.e. antiferromagnetic.
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For IR  the algebra of the solution is very similar, although the BV’s are
slightly different. The only difference in the final solutions is a minus sign. The
solutions are as follows:

The calculated magnetic modes for the 1 are shown in Table 2b below:

Table 2b – group 62 – pos. 4(a) – k=(0,0,1/2) - 1

Site Position 1 – Mx 1 – My 1 – Mz

1 (0.00, 0.00, 0.00) [ A1,0,0] [0,A2,0] [0,0, A3]
2 (0.00, 0.50, 0.00) [-A1,0,0] [0,A2,0] [0,0,-A3]
3 (0.50, 0.50, 0.50) [-B1,0,0] [0,B2,0] [0,0, B3]
4 (0.50, 0.00, 0.50) [ B1,0,0] [0,B2,0] [0,0,-B3]

As can be easily noticed all modes are again collinear. For  IR there are two
exactly compensated antiferromagnetic modes Mx, Mz , as the magnetic moments
are fully compensated for any choice of  (A1,B1) and (A3,B3). There was only one
such a mode found for   

As can be seen for both representations the compensation always takes places
in the ion pairs (1-2) and (3-4) respectively.  In the general case, when all the
modes contribute to the structure it may take the form of a noncollinear (canted)
ferromagnet or ferrimagnets (t1 - My  and   t2 – Mx, Mz) or a fully compensated
antiferromagnet (t1 – Mx, Mz  and   t2 – My).

The solutions presented above specify the model structure in the so called
“zero-cell” i.e. for translation vector equal to zero. The wave vector value (0,0,1/2)
tells the rest, i.e. sets the propagation of the solution to an arbitrary cell of the
crystal. It can be easily noticed that the solution will take alternating signs in
consecutive crystal cells along the z axis, i.e. the magnetic cell will be doubled
along the z direction. The solution does not change if the translation vector lies in
the (x-y) plane, so the x and y axis period will remain the same. 
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